Comments on the Schrodinger equation with delta '-interaction in one dimension

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L617
(http://iopscience.iop.org/0305-4470/25/10/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:27

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Comments on the Schrödinger equation with $\boldsymbol{\delta}^{\prime}$-interaction in one dimension

Bao-Heng Zhao
Department of Physics, Graduate School, Chinese Academy of Sciences, PO Box 3908, Beijing 100039, People's Republic of China

Received 23 January 1992

Abstract

The boundary conditions at the singular point for the Schrödinger equation with δ^{\prime}-interaction in one dimension are proposed. It is also shown that the boundary conditions adopted by Albeverio et al are irrelevant to the δ^{\prime}-interaction.

In the study of the quantized Davey-Stewartson I system [1], as $N=2$ (two particles), we encountered the Schrödinger equation

$$
\begin{equation*}
-\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} x^{2}}+c \delta^{\prime}(x) \psi=E \psi \tag{1}
\end{equation*}
$$

where c is the coupling constant, and $\delta^{\prime}(x)$ is the derivative of the δ-function. The same equation also appeared in [2-4]; however, it was dealt with incorrectly, i.e., the boundary conditions for it in [2-4] at the singular point are irrelevant to the δ^{\prime} interaction.

The appropriate boundary conditions can be derived as follows. Integrating (1) from 0^{-}to 0^{+}and noting that $\delta^{\prime}(x) \psi(x)=\delta^{\prime}(x) \psi(0)-\delta(x) \psi^{\prime}(0)$, we obtain $\psi^{\prime}\left(0^{+}\right)-$ $\psi^{\prime}\left(0^{-}\right)=-c \psi^{\prime}(0)$. Integrating (1) twice, from $-L<0$ to x and from 0^{-}to 0^{+}respectively, we obtain $\psi\left(0^{+}\right)-\psi\left(0^{-}\right)=c \psi(0)$. These two relations for $\psi(0), \psi\left(0^{ \pm}\right), \psi^{\prime}(0)$ and $\psi^{\prime}\left(0^{ \pm}\right)$ are necessary conditions of a wavefunction ψ being the solution of (1). As usual, we require ψ to be continuous at $x=0$, then $\psi\left(0^{+}\right)=\psi\left(0^{-}\right)=\psi(0)=0$. So (1) can be replaced by

$$
\begin{align*}
& -\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} x^{2}}=E \psi \quad \text { as } x \neq 0 \tag{2}\\
& \psi\left(0^{+}\right)=\psi\left(0^{-}\right)=\psi(0)=0 \\
& \psi^{\prime}\left(0^{+}\right)-\psi^{\prime}(0)=-c \psi^{\prime}(0)
\end{align*}
$$

We can write $\psi=\theta(x)\left(a \mathrm{e}^{\mathrm{i} k x}+b \mathrm{e}^{-\mathrm{i} k x}\right)+\theta(-x)\left(a^{\prime} \mathrm{e}^{\mathrm{i} k x}+b^{\prime} \mathrm{e}^{-\mathrm{i} k x}\right)$, where a, b, a^{\prime} and b^{\prime} are constants to be determined, and $k^{2}=E$. From the boundary conditions in (2) we obtain, apart from a normalization constant,

$$
\begin{equation*}
\psi=\left[1-\frac{c}{2} \varepsilon(x)\right] \sin k x \tag{3}
\end{equation*}
$$

where $\varepsilon(x)=1$ as $x>0,0$ as $x=0,-1$ as $x<0$, and we have taken $\theta(0)=\frac{1}{2}$ We can check the validity of (3) directly by the substitution of (3) into (1). We note that the singular term in $-\mathrm{d}^{2} \psi / \mathrm{d} x^{2}$ cancels the singular potential term.

In contrast with the above approach, in $[2,3]$ for one-centre δ^{\prime}-interaction,

$$
\begin{align*}
& -\frac{d^{2} \psi}{d x^{2}}=E \psi \quad \text { as } x \neq 0 \\
& \psi^{\prime}\left(0^{+}\right)=\psi^{\prime}\left(0^{-}\right) \tag{4}\\
& \psi\left(0^{+}\right)-\psi\left(0^{-}\right)=\beta \psi^{\prime}(0)
\end{align*}
$$

are proposed as the substitute for (1). From the discussion above, it is clear that the boundary conditions in (4) are irrelevant to the δ^{\prime}-interaction. Thus it is not surprising that if we substitute the eigenfunction in (4.23) of [3] into the Schrödinger equation with δ^{\prime}-interaction, we find that the eigenfunction does not satisfy the Schrödinger equation. Similar problems exist in the treatment of the many-centre δ^{\prime}-interaction in [2,3].

We have noticed that the boundary conditions adopted by [4] are also irrelevant to the Schrödinger equation with $\boldsymbol{\delta}^{\prime}$-interaction.

The author is grateful to Professors E K Sklyanin and P P Kulish for useful discussions and for calling the author's attention to the monograph [3].

References

[1] Pang G D, Pu F C and Zhao B H 1990 Phys. Rev. Lett. 653227
[2] Gesztesy F and Holden H 1987 J. Phys. A: Math. Gen. 205157
[3] Albeverio S, Gesztesy F, Hoegh-Krohn R and Holden H 1988 Solvable Models in Quantum Mechanics (Berlin: Springer)
[4] Seba P 1988 Rep. Math. Phys. 24111

